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Vortex merger in rotating stratified flows
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This paper describes the interaction of symmetric vortices in a three-dimensional
quasi-geostrophic fluid. The initial vortices are taken to be uniform-potential-vorticity
ellipsoids, of height 2h and width 2R, and with centres at (±d/2, 0, 0), embedded within
a background flow having constant background rotational and buoyancy frequencies,
f/2 and N respectively. This problem was previously studied by von Hardenburg et al.
(2000), who determined the dimensionless critical merger distance d/R as a function
of the height-to-width aspect ratio h/R (scaled by f/N). Their study, however, was
limited to small to moderate values of h/R, as it was anticipated that merger at large
h/R would reduce to that for two columnar two-dimensional vortices, i.e. d/R ≈ 3.31.
Here, it is shown that no such two-dimensional limit exists; merger is found to occur
at any aspect ratio, with d ∼ h for h/R � 1.

New results are also found for small to moderate values of h/R. In particular,
our numerical simulations reveal that asymmetric merger is predominant, despite
the initial conditions, if one includes a small amount of random noise. For small
to moderate h/R, decreasing the initial separation distance d first results in a weak
exchange of material, with one vortex growing at the expense of the other. As d
decreases further, this exchange increases and leads to two dominant but strongly
asymmetric vortices. Finally, for yet smaller d, rapid merger into a single dominant
vortex occurs – in effect the initial vortices exchange nearly all of their material with
one another in a nearly symmetrical fashion.

1. Introduction
Vortices play a central role in the evolution of high-Reynolds-number flows. Regions

of intense swirling motions are highly energetic and generally move as material
volumes, making them conspicuous features. In stably stratified, rotating flows, such
as the Earth’s atmosphere and oceans, these vortices are readily identified by their
anomalous ‘potential vorticity’ (PV) q(x, y, z, t), a scalar quantity which is materially
conserved in the absence of diabatic forcing or dissipation. In the real atmosphere
and oceans, the PV is sufficiently well conserved in many regions to merit special
attention. The three-dimensional distribution of this dynamical tracer to a great extent
determines the three-dimensional flow field (cf. Hoskins, McIntyre & Robertson 1985).
In turn, the flow field modifies q, strictly speaking ‘rearranges’ it, giving rise to a new
flow field, and so on. When q is perfectly conserved, and when q completely determines
the flow field (as in ‘balanced’, gravity-wave-free approximations of the full governing
equations), then a material Lagrangian description of the fluid motion in terms of
coherent regions of q, ‘vortices’, can be used to great advantage. The flow evolution
is then controlled by the motion of the vortices, in particular their interactions with
each other.

Many studies have focused on the idealized interaction of vortices, the merging
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of two vortices in particular, and almost all of these studies have considered a two-
dimensional fluid (independent of one spatial coordinate, say of z). A two-dimensional
fluid may be regarded as a limiting case of a three-dimensional rotating stably stratified
fluid between narrowly separated rigid (stress-free) horizontal boundaries. In this
case, there is no scope for vertical variations, and the flow remains two-dimensional
if initially so.† Originally, however, a two-dimensional fluid was regarded as an
approximation to a three-dimensional non-rotating unstratified fluid, in aerodynamics
(see e.g. Saffman 1992). In any case, one of the first problems examined was the
merger of two identical ‘symmetric’ vortices by Christiansen & Zabusky (1973). They
employed a particle-in-cell numerical algorithm to follow clouds of point vortices
initially distributed uniformly over two circular disks of radius R and separated by
a distance d centre-to-centre. Their simulations indicated that, for d . 3.4R, the two
vortices (or vortex clouds) coalesce or ‘merge’ into one, along with some filamentary
remnants, while for d & 3.4R, the vortices interact elastically, with no evidence of
merging, at least over the period of time simulated. More recently, the critical merger
distance was pinned down to d = dc ≈ 3.31R by Waugh (1992) using accurate contour
dynamics simulations. (See Waugh 1992 for a review of other works on this problem.)

Several studies have generalized this two-dimensional problem to consider the effect
of vertical structure on vortex merger. All of these studies have used the simplest
balanced system applicable to rotating, stably stratified flows, namely the ‘quasi-
geostrophic’ (QG) one (described in § 2). Of most direct relevance is the work of
Verron, Hopfinger & McWilliams (1990), who determined the conditions for vortex
merger in a two-layer QG fluid. These conditions depend on several parameters:
the layer depth ratio, the ratio of the potential vorticity (PV) in each layer, as well
as the distance between vortex centres. But the utility of these results for a three-
dimensional, many-layer flow is not clear. Do new phenomena occur? Is the detailed
vertical structure important?

Two recent studies have examined vortex interactions in three-dimensional QG
flows. Dritschel & de la Torre Juárez (1996, hereafter DTJ), considered two initially
columnar (two-dimensional) vortices in mutual equilibrium (cf. Dritschel 1995) within
a domain of depth H . They showed that, for sufficiently large H/R, where R is the
mean vortex radius, arbitrarily small vertical disturbances induce the vortices to break
down three-dimensionally, eventually resulting in vortex merger at either the upper or
lower surface of the domain and the formation of two roughly hemispherical domes
of PV at the opposite surface. At sufficiently small H/R, the vortices merge just
as in a two-dimensional fluid – then, three-dimensional disturbances do not amplify
significantly. These results were shown to be a consequence of a three-dimensional
instability that occurs when H/R & 6f/N, where f and N are the frequencies
associated with the background rotation and buoyancy.

More recently, von Hardenburg et al. (2000, hereafter HX), studied the merging
of two ellipsoidal distributions of PV in a triply periodic domain (approximating an
unbounded domain). Each ellipsoid was given a common half-height h, a radius R,
and a cosine-shaped profile of PV increasing inwards across ellipsoidal surfaces of
fixed aspect ratio h/R (several additional simulations were performed using uniform-
PV profiles that indicate only a weak sensitivity to the PV profile). The two ellipsoids
were located at the same vertical level and their centres were separated horizontally

† This is strictly true only for horizontal scales L � NH/f, where H is the depth of the fluid,
and N and f are the buoyancy and rotational frequencies – see Dritschel, de la Torre Juárez &
Ambaum (1999).
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by a distance d. By varying d in a series of numerical simulations, HX estimated
the dimensionless critical merger distance dc/R as a function of h/R, over the range
0.16f/N 6 h/R 6 3.5f/N.

For h/R � f/N, they find that dc/R tends to a constant around 2.2, i.e. the vortices
must be nearly touching initially for merger to occur. On the other hand, their results
for the largest values of h/R examined indicate dc/R ∝ h/R. They did not consider
it necessary however to examine still larger values of h/R, but instead relied upon
earlier results for the merger of vortices in a two-layer QG fluid (Verron et al. 1990)
which indicated that dc eventually asymptotes the two-dimensional result, dc = 3.3R,
as h/R →∞, after a small overshoot. By contrast, the results of DTJ, for a many-layer
fluid, show a clear three-dimensionalization at sufficiently large vortex aspect ratios,
with vortex merger near the top and bottom boundaries and locations in between,
depending on the initial aspect ratio (see also Dritschel & Macaskill 2000).

DTJ did not consider ellipsoidal vortices but columnar ones; moreover, they did
not consider periodic vertical boundaries. But nor did Verron et al. (1990). What then
is to be expected at larger aspect ratios? To answer this question, a large number
of simulations of the interaction of two identical uniform-PV ellipsoids have been
carried out which cover a wide range of aspect ratios, up to h/R = 20f/N. Vortex
merger has been found to occur also at these large aspect ratios and, moreover, dc/R
continues to increase approximately linearly with h/R. These results are described in
§ 3, after a description of the physical system, problem setup and numerical methods
in § 2. The relation of these numerical results to the linear instability of vortex columns
described by DTJ is discussed in § 4. The conclusions are given in § 5.

2. Problem formulation
As in HX, we consider here the simplest fluid dynamical system embodying the

two basic ingredients of rotation and stable stratification. This quasi-geostrophic (QG)
system is obtained from the full ‘primitive’ equations by an asymptotic expansion in
three small parameters: (i) the height-width aspect ratio H/L of characteristic motions
(constrained to be small due to the shallow geometry); (ii) the Rossby number Ro or
ratio of the normal component of the relative vorticity ζ to the normal component
of the background vorticity f = 2Ω sinφ, where Ω is the planetary rotation rate and
φ is the latitude; and (iii) the Froude number Fr or the ratio of relative (horizontal)
fluid speed U to the wave speed associated with stratification c = NH , where N is
the buoyancy frequency. (For the ocean, N =

√−gρ−1∂ρ/∂z where ρ is the density
and g is the acceleration due to gravity.) Note that in the atmosphere, f/N ∼ 10−2

while in the oceans, f/N ∼ 10−1. Quasi-geostrophy is obtained assuming H/L � 1
and F2

r � Ro � 1 (see for instance Stegner & Zeitlin 1995).
Here, as in HX, we take f and N to be constant and consider a Boussinesq fluid

in which the density varies little across the depth of the domain considered. Then
it is appropriate to rescale the vertical coordinate z by f/N, for then the governing
equations may be expressed in a parameter-free way as

∂q

∂t
+ u · ∇q ≡ Dq

Dt
= 0, (1a)

∇2ψ = q, (1b)

u = −∂ψ
∂y
, v =

∂ψ

∂x
, (1c, d)
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where u is the horizontal geostrophic velocity, ψ is the streamfunction, and ∇2 is
the three-dimensional Laplacian. Note that, to this order of approximation in the
governing equations, O(Fr), there is no vertical motion: w = 0. The advection of PV
in (1a) is purely horizontal. If we drop ∂2ψ/∂z2 from (1b), we recover the purely
two-dimensional system.

For the numerical simulation of the flow evolution, HX used a finite-difference
multi-grid method and employed periodic boundaries in both vertical and horizontal
directions. Here, we also employ periodic boundaries but use a different numerical
method, the ‘contour-advective semi-Lagrangian’ (CASL) algorithm (Dritschel &
Ambaum 1997). The CASL algorithm combines contour surgery (CS, Dritschel 1989)
with a standard pseudo-spectral (PS) method. In this way, it benefits from the
accuracy of CS (which follows PV contours in a Lagrangian way) and the efficiency
of PS (which can rapidly compute the velocity field by Fourier transforms). Moreover,
Lagrangian advection lifts the CFL stability constraint, and a contour representation
of the PV allows one to represent fine-scale structure well below the scales accessible to
conventional numerical methods. The upshot is that, for a given accuracy, the CASL
algorithm is typically hundreds of times faster than either CS or PS in complex flow
simulations (Dritschel, Polvani & Mohebalhojeh 1999).

A second numerical method, based purely on CS, is also employed (see Appendix A
for the details of this method). This CS algorithm permits one to study the flow evol-
ution in an unbounded domain, freeing one from the unwanted effects of periodicity,
but simulations are costly. However, the effects of periodicity turn out to be significant
for all but shallow vortices, despite using vortices that are small compared to the
domain dimensions (and smaller than those simulated by HX). For this reason, nearly
all of the simulations were conducted using CS except for the small aspect ratio cases
h/R < 0.5, which were not found to be sensitive to the domain periodicity (details
are given below).

The initial flow consists of two uniform-PV ellipsoids, centred at x = (±d/2, 0, 0),
having a circular horizontal cross-section, maximum radius R, and half-height h. The
bounding surface of each vortex is given by

(x∓ d/2)2 + y2

R2
+
z2

h2
= 1

and within each vortex, the potential vorticity q = Q, a constant, while outside q = 0.
(In the periodic case, the fact that the domain integral of ∇2ψ must vanish implies
that there is a small background value of q distributed uniformly throughout the
domain.) We take Q = 4π without loss of generality. A two-dimensional circular
vortex with this value of q would rotate exactly once in one unit of time.

The choice of a uniform PV distribution is primarily one of convenience and
maximum simplicity. While real vortices are likely to have more complex, non-uniform
distributions, interactions with other vortices tend to steepen edge PV gradients by
stripping away low-lying peripheral PV (see Yao, Dritschel & Zabusky 1995 for the
two-dimensional case). Even weak shear and strain associated with distant vortex
interactions can leave a vortex with a practically discontinuous jump in PV at
its edge (see Caillol, Legras & Dritschel 2001 and references therein, again for
the two-dimensional case). This together with the close similarities between the
two-dimensional and three-dimensional fluid models implies that, when diffusion is
weak, typical vortices have for all practical purposes compact PV distributions. Such
distributions are quite well approximated by uniform PV.

For the CASL simulations, the domain has dimensions L × L × D with L = 2π
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(without loss of generality) and the depth D chosen as follows. Given the parameters
h/R and d/R, first the radius is computed from R = 2/(2 + d/R), which means that
the outermost edges of the vortices at the mid-plane z = 0 touch x = ±1. This is done
to keep the periodic boundaries far from the vortices. Then, the height of the domain
is chosen from H = 2πmax(R, h), where h = (h/R)R. This ensures that the vertical
extent of the vortices is small compared with that of the domain. The numerical
resolution is chosen according to the conditions that each vortex spans 40 layers
vertically and at least 10 grid points horizontally at mid-section (the actual horizontal
grid resolution is chosen to be a convenient multiple of 2, 3 and 5 to permit efficient
FFTs). Note that in the CASL algorithm, the PV is resolved to one tenth of the basic
grid scale and that some of this sub-grid-scale PV actually contributes to the velocity
field (a twice finer grid is used to convert the PV contours to gridded values during
the velocity calculation; see Dritschel & Ambaum 1997 for details of this and other
numerical parameters, as well as accuracy tests; see also Dritschel et al. 1999 for a
recent inter-algorithm comparison).

For the CS simulations, 40 layers are used to represent the vertical structure of
each vortex, except in a few higher resolution examples noted below. Tests indicate no
sensitivity of the critical merger distance to increases in vertical resolution, at least to
the digits reported below. Contours are resolved with a maximum dimensionless point
separation of µ = 0.15 and regularized at the surgical scale of δ = 1

4
µ2` = 0.01125R,

where ` = 2R is a length characterizing the PV distribution. The time step in both the
CS and CASL simulations is ∆t = 0.025, the recommended value for high accuracy.

As stated above, the CS simulations allow for a check on the effects of periodicity
(horizontal and vertical) within the CASL simulations. One would expect that these
periodic effects diminish with decreasing vortex size, keeping the domain size fixed,
but one cannot reduce the vortex size indefinitely in CASL or in any periodic code
(like that used by HX) due to the growing cost necessary to resolve each vortex
adequately. In the CASL simulations, the vortices are confined to the inner 3% or
less of the domain volume, yet the effects of periodicity are still evident, particularly
on the sensitive estimate of the critical merger distance, and especially for h/R � 1.
For example, when h/R = 1, the critical merger distance is 4% smaller in CASL than
it is in CS, while when h/R = 0.5, it is 2% smaller. Notably, HX used a much less
stringent criterion for choosing the vortex sizes; each vortex had a diameter of 1

2
π

regardless of their separation d, and no vertical extension of the domain beyond 2π
was made for their large aspect ratio cases. For those cases, both the horizontal and
the vertical extent of the initial conditions exceeded half the domain dimensions. As
a result, the quantitative estimates of the critical merger distance made by HX may
not be reliable.

3. Results
The simulation results are broken down into three regimes, depending on the initial

aspect ratio h/R.

3.1. The regime h/R 6 1

These shallow, lens-like vortices must be close together for merging, as found in HX,
though they need not be in near contact. For example, when h/R = 0.2, the vortices
merge if d/R 6 2.5 ≈ dc/R; this critical case (for d/R = 2.5) is shown in figure 1. For
all cases in this regime, vortices placed just within the critical merger distance first
form a bridge with one another, creating a dumbbell-shaped vortex which rotates
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Figure 1. Evolution sequence for two lens-like vortices with h/R = 0.2 and d/R = 2.5, as computed
using the CASL algorithm (using the basic grid resolution 72 × 72 × 628). Time advances to the
right and downwards, with times t = 0, 3, 26, 48, 53 and 137 displayed. The vortices are viewed from
an infinite vantage point (orthographic projection) at an angle of 30◦ from the vertical and in the
plane x = 0. Only the inner part of the domain |x| < 2π/3, |y| < 2π/3, |z| < h is shown. The front
and back vertical faces of the domain are rendered in a lighter shade of gray. The floor of the
domain which is not obscured by the front face is rendered a slightly darker shade.

steadily (evidently as a near-equilibrium structure) for a long period of time before
eventually destabilizing. Then, two unequal vortices form, something not seen in the
analogous simulations conducted by HX. In the case shown in figure 1, the secondary
vortex is very small, just 6% of the volume of the primary vortex, but when d/R
is increased, the relative volume of this secondary vortex is also increased. Figure 2,
for example, shows how the volume ratio of the two largest vortices varies with d/R
when h/R = 0.5. This volume ratio appears to be a monotonic function of d/R for
all aspect ratios.

This asymmetric evolution was not seen in the simulations of HX because they
enforced two-fold symmetry. The simulations here do not enforce this symmetry
(arguably Nature does not either), and they reveal a radically different view of
‘vortex merger’. Indeed, ‘merger’ is clearly an inadequate description of what actually
occurs here. A range of interactions is found, depending continuously on d/R.
For definiteness, we may call interactions in which the final secondary vortex or



Vortex merger in rotating stratified flows 89

1.0

0.8

0.6

0.4

0.2

0
2.4 2.5 2.6 2.7 2.8

d/R

V2
V1

Figure 2. The ratio of the final volumes of the next-to-largest and largest vortices as a function of
d/R, for vortices of initial height-to-width aspect ratio h/R = 0.5.

vortices constitute less that 10%, say, of the volume of the primary vortex ‘complete
merger’, following the nomenclature introduced earlier for two-dimensional vortex
interactions (Dritschel & Waugh 1992). A difference from the two-dimensional case is
that here secondary vortices are almost always produced because of the weaker shear
surrounding three-dimensional vortices (cf. Waugh & Dritschel 1991), so it is virtually
impossible to have complete merger in the original sense. All other interactions which
lead to a change in volume of the primary vortex are called ‘partial merger’, except
when the volume of the secondary vortex differs by less than 10% of the primary
vortex. We will call such interactions ‘weak exchange’, as only a small amount of
material is exchanged between the vortices before they reseparate. These three forms
of interaction are present up to and including h/R = 1.75.

3.2. The regime 1 < h/R 6 3

In this regime, vortex interactions are characterized by a substantial production of
filamentary debris and small-scale vortices (from the roll-up of the debris ejected
furthest from the main product vortex). Figure 3 shows an example of complete
merger at the lower end of this regime (h/R = 1.5, d/R = 2.9, volume of the
secondary vortices = 8.8% that of the primary vortex at t = 53). Here, after the
initial extended merger of the two vortices, one side of the compound vortex shears
vertically, with the middle part (in z) being pulled into the main vortex and its
outer tips expelled into thick filaments spiralling around the consolidating vortex.
The tips of these two filaments eventually roll up into significant vortices, and many
smaller-scale vortices are generated in a similar manner. The filaments thin and
disperse in the straining/shearing environment surrounding the vortices, and at late
times only three significant vortices survive. Towards the upper end of this regime,
a new phenomenon can be seen – figure 4 shows the case h/R = 2.5, d/R = 3.4,
an example of partial merger (volume of the secondary vortices = 11.7% that of the
primary vortex at t = 47.5). As in the previous case, many vortex roll-ups occur, but
here the main vortex tilts over and precesses about the z-axis, evidently a sign that
the vertically orientated state is unstable. This tilt develops over a short period of
time, and afterwards it displays a periodic behaviour – see figure 5. This asymmetric
behaviour was not found in the simulations conducted by HX, again because of the
two-fold symmetry enforced by their numerical method.
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Figure 3. Evolution sequence for the case h/R = 1.5, d/R = 2.9 (computed using the CS algorithm
with 100 layers). Times t = 0, 1.5, 4, 8, 12, 16, 20, 32 and 53 are displayed. The computational domain
is here unbounded, but the perspective and rendering in this and all subsequent figures of the flow
evolution is the same as in figure 1.

3.3. The regime h/R > 3

For greater aspect ratios, beyond those considered by HX, merger is found to continue
from greater initial separation distances, with d ∼ h. In this regime, only partial merger
(or no merger) is found. The result of partial merger is one dominant, erect vortex
centred at the origin plus a great many smaller vortices encircling it, particularly
above and below the dominant vortex. As h/R increases, the total relative volume of
these smaller vortices increases, and for h/R & 5, exceeds that of the dominant vortex
(by as much as 1.96 times in the case h/R = 20, d/R = 12.6).

The flow evolution in all cases is qualitatively similar. At first, the vortices de-
form into a boomerang shape, with the mid-sections near z = 0 advancing faster
azimuthally about the joint centre of the two vortices, the z-axis. This makes sense
from the form of the flow field induced by one ellipsoid on another: the azimuthal
velocity is strongest at z = 0 and weakest at the vortex extremities. The vortices then
rotate counter-clockwise so that their mid-sections move radially inwards while their
extremities move outwards. This motion is self-induced by the vortex deformation.
The closer proximity of the vortex mid-sections implies an even stronger azimuthal
propagation and bending, and in turn the inward motion of the vortex mid-sections
through self-induced rotation. If this rotation works faster than the azimuthal bend-
ing, the vortex centres pass each other at too great a distance and begin the whole
process in reverse, eventually returning the vortices to a near ellipsoidal form; this
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Figure 4. Evolution sequence for the case h/R = 2.5, d/R = 3.4 (computed using CS with 100
layers). Times t = 0, 6, 9.5, 16, 21, 26, 29, 33 and 46 are displayed.
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Figure 5. The angle φ between the major axis of the vortex and the vertical axis versus time for
the case shown in figure 4. This angle is found by fitting the second-order spatial moments (the
integrals of x2, xy, xz, y2, yz and z2 over the largest contiguous vortex) to an arbitrarily orientated
ellipsoid. When the two original vortices first merge, φ = 90◦ because the major axis then lies in the
(x, y)-plane. The subsequent decrease of φ means that the major axis tilts out of the (x, y)-plane,
here by between 15 and 45◦.
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Figure 6. Evolution sequence for the case h/R = 4.5, d/R = 4.5 (computed using CS with
40 layers). Times t = 0, 3, 6, 7, 8, 15, 25 and 45 are displayed.

Figure 7. As in figure 6, but for d/R = 4.4. The same times are displayed except for the last
(which is t = 47 here).

is shown in figure 6 for the case h/R = 4.5, d/R = 4.5. Reducing d/R to 4.4 results
in merger – see figure 7. The mid-sections collide and form a moderately tall ellip-
soidal vortex at late times. The extremities form a progressively tighter spiral which
eventually destabilizes, forming a multitude of small-scale vortices and filamentary
structures. This behaviour typifies all the large aspect ratio cases studied – see for
example figure 8 for the case h/R = 10 and d/R = 7.6 ≈ dc/R.

3.4. Critical merger distance

Figure 9 summarizes the results of the approximately 100 simulations performed;
in 9(a) the dimensionless critical merger distance dc/R is plotted versus h/R, while
in 9(b) an enlargement for h/R 6 3 is plotted. First of all, this enlargement shows
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Figure 8. Evolution sequence for the case h/R = 10, d = 7.6R ≈ dc (computed using CS with
100 layers). Times t = 0, 25, 27, 29, 31, 33, 40, 50 and 103.5 are displayed.

that the interaction between two vortices is more complex than was previously
thought. The reason is that asymmetries rapidly develop if permitted initially – they
evidently develop faster than symmetric disturbances, despite the near symmetry of
the initial conditions, unless the vortices are initially close together, in which case
complete merger occurs. In a complex flow, where vortices may be driven together by
other vortices further afield, the interaction regimes first encountered would be weak
exchange and partial merger, which suggests that these regimes may be more likely
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Figure 9. (a) Dimensionless critical merger distance dc/R as a function of the initial vortex aspect
ratio h/R. (b) Enlargement of (a) detailing the forms of interaction that occur for h/R < 3. Here
CM = complete merger (indicated by squares), PM = partial merger (inverted triangles), WE =
weak exchange (triangles), and EI = elastic interaction (crosses).

than complete merger. While it is certainly premature to draw general conclusions
from the interaction of initially identical vortices, the preference for weak exchange
and partial merger could have a crucial influence on the vortex size distribution in
turbulence.

The other striking result here is the continued, evidently unabated growth of the
critical merger distance with vortex height. This suggests that the two-layer results of
Verron et al. (1990) are not applicable to tall vortices. Indeed, one can see that, from
the boomerang shapes exhibited by the tall vortices here, at least three layers are
needed to capture any semblance of the merger of tall vortices. This has been verified
in simulations of the interaction of two vortex columns in two or more layers. For
parameters which lead to the merger of tall columns in three or more layers, two-layer
vortices do not exhibit merger; instead the upper and lower layers of each vortex
drift apart and then re-align quasi-periodically. This illustrates a serious deficiency of
the two-layer approximation to continuous stratification.
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Figure 10. Comparison of the final and initial vortex height-to-width aspect ratios for vortices
initially separated by the critical merger distance (this is the largest distance from which complete
merger occurs, or, for tall vortices, from which partial merger occurs). The final value of h/R is

determined from the second-order spatial moments, using h =
√

5Mzz/V and R =
√

3V/4πh, where

V is the vortex volume and Mzz is the integral of z2 over the vortex.
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Figure 11. Volume of the largest product vortex divided by the volume of one of the original
vortices as a function of the initial h/R and for vortices starting at the critical merger distance.

3.5. Change in vortex aspect ratio

HX also quantified the final aspect ratio of the merged vortices, and generally found
values less than unity over the range of initial aspect ratios considered. They argued
that their results supported an earlier analysis of vortex shapes in QG turbulence
(McWilliams 1990). The results of the present study, for uniform-PV vortices, are
shown in figure 10. A whole range of final aspect ratios are found, many exceeding
unity. One can only say that merger results in flatter vortices. It is premature to argue
that these results are relevant to QG turbulence however, since it is highly improbable
that two interacting vortices in QG turbulence would be almost the same size and at
almost the same vertical level for the present results to apply.

3.6. Change in volume

In two-dimensional flows, vortex merger is generally thought to result in a single,
larger product vortex. Yet, this picture is misleading: vortex interactions are not
typified by merger (Dritschel & Waugh 1992), and the largest product vortex is not
always larger than the largest initial vortex, indeed it can be smaller (Dritschel 1995).
Exactly what happens depends on the initial size ratio of the vortices and their
separation. Here, for the three-dimensional case, we can only report what happens
for highly symmetric initial conditions. For each initial aspect ratio h/R, figure 11
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shows the volume of the largest product vortex divided by the volume of one of the
original vortices, for vortices initially separated by the critical merger distance dc (as
defined in the caption of figure 9). As h/R → 0, the product vortex tends to double
in size – there are very few filaments produced. This is also found in two-dimensional
flows when the Green function has a short range (see Waugh 1992, who considered
a Green function approximating the lens-like interactions considered here). As h/R
increases, the volume ratio generally decreases, except for a region 1 . h/R . 2. This
may be associated with the onset of vortex tilting and precession (first observed at
h/R = 1.5). The volume ratio remains greater than 1 until about h/R = 4.5, after
which the largest product vortex is smaller than the original vortices. At large aspect
ratios, many smaller vortices are produced, in addition to filaments. Interestingly,
the volume ratio appears to asymptote 0.6 approximately (this is consistent with the
nearly linear growth of the final vortex aspect ratio seen in figure 10).

4. The regime h/R � 1 and its relation to the tall-column instability
For a columnar, two-dimensional vortex vertically confined between two isothermal

horizontal boundaries (at which ∂ψ/∂z = 0), DTJ showed that an external, two-
dimensional straining flow of the form

uext = (γ + Ω)y, vext = (γ − Ω)x (2)

can destabilize a vortex of sufficiently great height-to-width aspect ratio. Here γ is the
strain rate, and Ω is the rotation rate of the strain axes, in a reference frame rotating
with Ω. This straining flow is the leading-order approximation of the flow induced
by distant columnar vortices surrounding a given vortex. DTJ showed, for example,
that two columnar vortices exert a strain on each other of this form, and that the
joint instability of the two vortices – which results in merger – can be explained by the
instability of each vortex in the straining field of the other.

It is plausible, as discussed next, that this instability also underlies the merger of
tall ellipsoidal vortices. Here, however, the ellipsoids are not initially in equilibrium,
nor are they columnar. Yet, tall vortices appear locally columnar, especially near their
mid-sections where |z| � h, and the unsteadiness is most significant only far from this
region. Moreover, one can regard the initial ellipsoidal state as a perturbed form of
a nearby equilibrium state. And lastly, during the early period of the flow evolution,
the vortex cross-sections remain very nearly circular while shearing vertically. This is
the trademark of the tall-column instability discussed by DTJ (see also Appendix B
for further details).

For two columnar vortices of equal radius R and equal PV Q, the strain generated
by one vortex in the vicinity of the other is given by γ = 1

2
Q(R/d)2, where d is the

vortex separation and here d � R is assumed. Meanwhile, the two vortices rotate
about each other at the rate Ω = 2γ. The analysis in Appendix B shows that, when
the dimensionless strain γ̂ = γ/Q � 1, i.e. when d � R, a vortex is unstable for a

range of dimensionless axial wavenumbers k̂ = kR closely satisfying

(g(k̂)− Ω̂)2 < γ̂2

where

g(k̂) = 1
2
− I1(k̂)K1(k̂) ≈ 1

4
k̂2[0.36593152 . . .− log k̂] (3)

for k̂ � 1. For Ω = 2γ, there is both a long-wave and a ‘short’-wave cutoff (still with

k̂ � 1). The short-wave cutoff implies that vortices which are too short are stable,
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because the wavenumbers available to a columnar vortex in a domain of height H
are given by k = nπ/H , n = 1, 2, 3, . . . . Therefore, the above expression, ignoring the

log k̂ correction, implies that H/R & γ̂−1/2 for instability. But for two equal columnar
vortices, γ̂ = 1

2
(R/d)2, so we are left with the simple relation H/R & d/R or H & d

for instability, i.e. for the merger of two vortex columns.
This simple relation is consistent with the critical merger distance found for ellip-

soidal vortices in figure 9, if we replace H by h, the half-height of each vortex. One
can show that the strain induced by each vortex initially at the centre of the other
satisfies

γ =
R2

2d2
F(a)

where

F =

√
1 + a2

a
− 1

a2
log(

√
1 + a2 + a) (4)

and a = h/d. In the two-dimensional limit, a → ∞, we have F → 1, while in the
opposite limit for a shallow lens, a → 0, we have F → 2

3
a. On the other hand, the

rotation rate (computed from the angular velocity at the vortex centres) satisfies

Ω =
R2

d2
F(a) (5)

with the same functional dependence on a. Thus, just as for vortex columns, here
we have Ω = 2γ. The effect of a = O(1) is only to reduce the strain rate somewhat
from that applicable to columnar vortices (e.g. F(1) = 0.53284 . . .). Hence, the strain
field near the vortex mid-sections is of the same form and magnitude as for columnar
vortices. Finally, to carry over the results of the columnar vortex stability analysis, we
need to estimate the ‘disturbance’ axial wavenumber, but one is naturally provided
by the axial variation of the ellipsoid, i.e. k = O(1/h). By analogy with the columnar
case, we then have h & d as the condition for vortex merger.

It is difficult to be much more quantitative, since several logarithmic factors and
O(1) constants have been omitted. Moreover, the initial flow is not in equilibrium.
Efforts were made to use the ideas of slender vortex theory (cf. Krause & Gersten
1998) applicable when the vortex cross-section is narrow compared with characteristic
axial scales, but none of the standard approximations were sufficiently accurate to
reproduce the simulated results. For example, using the leading-order local induction
approximation misses out an important non-local contribution coming from the rest
of the vortex. Using direct integrations along vortex line elements with a modified,
non-singular Green function that includes the local vortex cross-section r̄(z) (i.e.
−1/4π

√|x− x′|2 + r̄2(z′)) did not give sufficiently accurate results either. It appears
that the displacement of the core depends sensitively on an accurate representation
of the core, and even if it is of nearly circular shape, one must be careful to carry out
the integration accurately over the cross-section. This gives rise to a proliferation of
elliptic integrals, and the resulting model would hardly simplify the direct simulation
method used here.

5. Conclusions
This paper has re-examined the merger of symmetric vortices in a three-dimensional

quasi-geostrophic fluid. New numerical results have extended the range of vortex
height-to-width aspect ratios previously investigated and have shown that merger
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continues at large aspect ratios. Theoretical results on the instability of tall vortex
columns support the trend found in the numerical results. Merger occurs for ellipsoidal
vortices whose height h (scaled on f/N) roughly exceeds their initial separation
distance d. There appears to be no two-dimensional limit as h/d → ∞. Vortices of
any height, in an unbounded domain, merge in a three-dimensional fashion if d . h.

This conclusion was not expected by HX who considered the same problem. Nor did
they expect asymmetric interactions to occur. The present results indicate that such
asymmetric interactions are in fact commonplace. Their existence reveals a surprising
richness to vortex interactions even when the initial conditions are highly idealized.
This presents a real challenge for quantifying ‘typical’ vortex interactions in rotating,
stratified flows. The study here of symmetric vortices only scratches the surface of
a much larger problem, namely the interaction of unequal-sized vortices at different
vertical levels. In turbulence, it is rare that two vortices of comparable volume, shape,
and mean height are found on the brink of merger. It is therefore important to
analyse simulations of turbulence for the generic forms of vortex interactions. Such
an analysis would help to focus research on the most relevant forms of interaction.

Appendix A. The unbounded QG contour surgery algorithm
This Appendix discusses the numerical algorithm used for most of the simulations

reported. The algorithm is a straightforward extension of the ‘contour surgery’ al-
gorithm developed for three-dimensional QG flow by Dritschel & Saravanan (1994).
Only the essential differences are discussed here.

The starting point is (1b); the inversion of Laplace’s operator in three dimensions
is affected by the Green function G(r) = −1/(4πr), where r = |x′ − x| is the (three-
dimensional) distance between the ‘source’ point x′ and the ‘target’ point x. Now
consider a piecewise-uniform distribution of potential vorticity q. For simplicity, let
there be just one contour C at each height z, into which q jumps by ∆q(z). Since (1b)
is linear in ψ and q, the general case of any number of contours can be obtained by
linear superposition. In Dritschel (1989), it is shown that when the Green function
depends only on coordinate differences, as here, the velocity field can be expressed in
terms of (right-handed) contour integrals over the Green function. Explicitly, we have

u(x) = (u, v) = −
∫

dz′∆q(z′)
∮
C(z′)

G(r)(dx′, dy′) (A 1)

(Stokes’ theorem is used to convert the area integral to a contour integral).
In the numerical algorithm, the height is discretized into n layers of equal thickness

∆z. Only the finite height range spanning the vortices needs to be discretized. Over
each layer, ∆q and the contour position (x′, y′) are assumed to be independent of
height. Then, the integral over each layer can be performed analytically. It is evaluated
at the middle of each layer z̄j to give (an approximation to) the velocity of any contour
in that layer (with an error of O(∆z2)). The final expression for the velocity at a point
(x, y) in layer j is

uj(x, y) =
1

4π

n∑
k=1

∆qk

∮
Ck

[λ+
jk − λ−jk](dx′k, dy′k) (A 2)

where λ±jk ≡ log[(ρ2 + (|zjk| ± 1
2
∆z)2)1/2 + |zjk| ± 1

2
∆z], ρ2 ≡ (x− x′k)2 + (y − y′k)2, and

zjk = z̄j − z̄k is the height difference between layers j and k. Now, all of the λ±jk are
non-singular as the two-dimensional distance ρ→ 0 except for λ−jj . The latter contains
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a logarithmic singularity, the two-dimensional Green function in fact, and it is useful
to deal with it separately, using λ+

jj − λ−jj = 2λ+
jj − 2 log ρ. The integral over log ρ is

done explicitly, as described in Dritschel (1989), to avoid numerical instability. The
remaining non-singular functions λ±jk are integrated by parts to give simpler functions
(which can be evaluated much more rapidly than logarithms); using now x ≡ (x, y),
this gives for j 6= k∮
Ck

[λ+
jk−λ−jk] dx′k =

∮
Ck

(x′k−xj)
[

1

(c+
jkρ

2 + 1)1/2
− 1

(c−jkρ2 + 1)1/2

]
(x′k − xj) · dx′k

ρ2
(A 3)

where c±jk ≡ (|zjk| ± 1
2
∆z)−2, and for j = k∮

Cj
2λ+

jj dx′j =

∮
Cj

(x′j − xj)
[

∆z

(ρ2 + 1
4
∆z2)1/2

− 2

]
(x′j − xj) · dx′j

ρ2
. (A 4)

These integrals are carried out using two-point Gaussian quadrature along the piece-
wise cubic curves connecting adjacent nodes. Details may be found in Dritschel
(1989).

Appendix B. The tall-column instability in the weak strain limit
This Appendix indicates how to obtain an accurate estimate of the stability of a

columnar vortex when the dimensionless external strain γ/Q ≡ γ̂ � 1. The analysis
follows that of DTJ. We consider here only flows in which the background rotation
Ω is comparable to or less than γ. These flows typify virtually all forms of vortex
interactions. For example, two equal vortices exert a straining flow on each other that
has Ω = 2γ, while two opposite vortices have Ω = 0. Here, we define β = Ω/γ and
consider β = O(1).

Without loss of generality, we take Q = 1, allowing us to drop the hats from γ and
Ω. Then, when γ � 1, the steady basic state is an elliptical column very close to a
circular shape; its aspect ratio satisfies λ = 1 − 4γ + O(γ2). This is used to simplify
the general stability equation given at the top of page 134 in DTJ, namely

∂η

∂t
+ Ωe

∂η

∂θ
=

q

2π

∂

∂θ

∫ 2π

0

η(θ′, t)K0(k|xe(θ)− xe(θ′)| dθ′ (B 1)

where Re[η(θ, t)eikz] is the normal displacement of the contour from an elliptical
shape, θ is the elliptical angular coordinate, k is the axial wavenumber, xe(θ) =
(λ1/2 cos θ, λ−1/2 sin θ) is the basic-state vortex boundary position, and Ωe is the value
of dθ/dt for the undisturbed flow. For λ = 1− 4γ + O(γ2), we have

Ωe = 1
2
− βγ + O(γ2).

The results of DTJ indicate that the range of unstable wavenumbers shrinks towards
k = 0 as γ → 0, so we assume that k2 = O(γ) in (B 1). Now, in this long-wave limit, it
is expected that the different azimuthal modes decouple (since they do for k = 0), so
we try a disturbance of the form

η(θ, t) = [η̂+eimθ + η̂−e−imθ]e−iσt

where the imaginary part of σ is the growth rate (a general disturbance consists of
a sum over the azimuthal wavenumber m). Moreover, for the tall-column instability,
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Figure 12. Growth rate of perturbations to an elliptical column scaled on the strain rate γ as a
function of β = Ω/γ and vertical wavenumber k. Here, γ = 0.01. The exact result, obtained via the
analysis described in DTJ, is shown in (a), while the approximate result, from (B 2), is shown in (b).
The contour interval is 0.1.

we know from DTJ that it is dominated by m = 1, so we consider only this value of
m in what follows.

The integral over the K0 Bessel function in (B 1) can be performed analytically
after expanding its argument to first order in γ. That is, using

|xe(θ)− xe(θ′)| ≈ [2(1− cos α)]1/2[1 + 2γ cos(α+ 2θ)]

with α ≡ θ′ − θ, we have

K0(k|xe(θ)− xe(θ′)| ≈ K0(k[2(1− cos α)]1/2)− 2γ cos(α+ 2θ).

Now, any function of the form eimα multiplied by either term can be integrated directly
(see Waugh & Dritschel 1991 for integrals involving this K0 function); the result is

(Ωe − σ)η̂+ = χ(k)η̂+ + γη̂−,
(−Ωe − σ)η̂− = −χ(k)η̂− − γη̂+, (B 2)

where χ(k) ≡ I1(k)K1(k). We have here ignored any term not involving e±iθ . Solvability
then gives

σ = ±[(g(k)− βγ)2 − γ2]1/2 (B 3)

where g(k) = 1
2
− I1(k)K1(k). Since g(k) = O(k2 log k), instability only occurs when k =

O(γ1/2), approximately. To see how this compares with the full analysis presented in
DTJ for arbitrary k, figure 12 shows Im[σ]/γ for the asymptotic result above in (b), and
for the full analysis in (a), for the value γ = 0.01. Apart from a slight difference in the
maximum growth rate, the results are otherwise remarkably close. This demonstrates
that the tall-column instability occurs because two counter-propagating helical modes,
e±iθ+ikz , become phase-locked by the background strain.
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